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tonolysis of 3 that gives cyclohexanone, 4 reacts with HCl to give 
Cp2ZrCl2 and cyclohexene (GC/MS; 1H NMR), demonstrating 
that the O-atom has not been transferred to a Zr-C bond in this 
complex. 
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Oxetanocin inhibits the in vitro replication of human immu­
nodeficiency virus (HIV), the causative agent of AIDS.1'2 X-ray 
crystallographic analysis3 of material produced by a strain of 
Bacillus megaterium4 has established oxetanocin's structure as 
compound 1. This unprecedented oxetanosyl-./V-glycoside presents 

NH 2 NH 2 

new challenges in the synthesis of nucleosides5 and branched chain 
carbohydrates.6 These difficulties are evident in the 19-step 
Nippon Kayaku synthesis,7,8 which produces oxetanocin in an 
overall yield of 0.008%. We report here an alternative synthesis 
of oxetanocin which should supply sufficient material for the 
elaboration and biological testing of derivatives. 

(1) Hoshino, H.; Shimizu, N.; Shimada, N.; Takita, T.; Takeuchi, T. J. 
Antibiot. 1987, 40, 1077-1078. 

(2) AIDS: Modern Concepts and Therapeutic Challenges; Broder, S., Ed.: 
Marcel Dekker: New York, 1987. 

(3) Nakamura, H.; Hasegawa, S.; Shimada, N.; Fujii, A.; Takita, T. 
Yoichi, I. J. Antibiot, 1986, 39, 1626-1629. 

(4) Shimada, N.; Hasegawa, S.; Harada, T.; Tomisawa, T.; Fujii, A.; 
Takita, T. J. Antibiot. 1986, 39, 1623-1625. 

(5) Walker, R. T. In Comprehensive Organic Chemistry; Barton, D., Ollis 
W. D., Eds.; Pergammon: New York, 1979; Vol. 5, Chapter 22.2, pp 53-104 

(6) Yoshimura, J. Adv. Carbohydr. Chem. Biochem. 1984, 42, 69-134 
(7) (a) Niitsuma, S.; Ichikawa, Y.; Kato, K.; Takita, T. Tetrahedron Lett. 

1987, 3967-3970. (b) Niitsuma, S.; Ichikawa, Y.; Kato, K.; Takita, T 
Tetrahedron Lett. 1987, 4713-4714. 

(8) For a recent synthesis of chiral oxetanes, see: (a) Austin, G. N.; Fleet 
G. W. J.; Peach, J. M.; Prout, K.; Son, J. C. Tetrahedron Lett. 1987, 
4741-4744. (b) Kawahata, Y.; Takatsuto, S.; Ikekawa, N.; Murata, M. 
Omura, S. Chem. Pharm. Bull. 1986, 34, 3102-3110. 

" (a) 2-Acetoxyisobutyryl bromide, CH3CN; (b) resin+OH", MeOH; 
(c) TBSCl, C6H5N; (d) LiEt3BH, THF; (e) BzCl, C6H5N; (f) 1 N 
aqueous NaOH, 1,4-dioxane; (g) CH3CH2NCN(CH2)3N(CH3)2HC1, 
Cl2CHCO2H, DMSO, C6H6; (h) (CH30)2CHN(CH3)2; (i) CF3SO2-
N3; (j) hv, >280 nm, MeOH; (k) NaBH4, EtOH; (1) TMSCl, MeOH. 

Recognition of oxetanocin as a structural isomer of cordycepin 
(2)9'10 suggested ring contraction as the pivotal synthetic trans­
formation. 

Although treatment of cordycepin with /e/t-butyldimethylsilyl 
chloride" in pyridine provided the nucleoside 5 directly, a more 
economical route utilized (-)-adenosine as the starting material. 
Thus, addition of 4.0 equiv of a-acetoxyisobutyryl bromide to a 
suspension of (-)-adenosine in acetonitrile containing 1.1 equiv 
of H2O at room temperature followed by treatment of the ethyl 
acetate extract with BioRad AG-1-X8 (OH") resin in methanol 
afforded a 92% yield of crystalline 2',3'-anhydroadenosine (4) in 
the manner described by Robins.12 Silylation of the 5'-hydroxyl 
group prior to reduction of the epoxide13 with 4.0 equiv OfLiEt3BH 
in THF at room temperature facilitated isolation of the required 
3'-deoxynucleoside 5 in an overall yield of 85%. The corresponding 
2'-deoxynucleoside was not detected. Treatment of compound 
5 with 4.0 equiv of benzoyl chloride in pyridine for 3 h at room 
temperature gave a mixture of di- and tribenzoates, which, without 
purification, was selectively O-deacylated by aqueous 1 N NaOH 
in dioxane.14 Moffatt oxidation15 of the resulting N-protected 
alcohol was carried out in 1 h by adding 0.2 equiv of dichloroacetic 
acid every 15 min to 5.0 equiv of l-ethyl-3-(3-(dimethyl-
amino)propyl)carbodiimide hydrochloride dissolved in a 1:1 
mixture of DMSO and benzene. After dilution with dichloro-
methane, the excess carbodiimide was easily removed by washing 
with water acidified to pH 3. Chromatography of the organic 
residue on silica gel with ethyl acetate/hexane afforded the ketone 
6 in 63% overall yield from the alcohol 5. 
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Rapid, base-catalyzed epimerization at C-I'16 precluded ap­
plication of the standard formylation-diazo transfer protocol17,18 

to the preparation of diazoketone 8. However, activation of the 
3'-carbon was readily achieved by heating the ketone 6 in neat 
iV./V-dimethylformamide dimethyl acetal at 60 0C for 15 min to 
give the enamino ketone 7 in 80% yield. The observation of 
NOE's19 between H-I ' and H-4' and H-5' and H-8 verified that 
the stereochemistry at C-I' had been preserved in this unusually 
facile reaction.20 In contrast, diazo transfer21" to the enamine21b 

proved to be unusually difficult. After the enamine failed to react 
with excess tosyl azide in refluxing toluene, we were delighted 
to find that diazo transfer from triflyl azide22 in 1,2-dichloroethane 
at 60 0 C was complete in just 2 h. Application of the reaction 
mixture to a column of silica gel packed in ethyl acetate/hexane 
and elution with the same solvents (1:3 to 10:0) yielded the dia­
zoketone 8 as a light yellow solid. Salient spectral features of this 
compound included a strong IR absorption at 2115 cm"1 ( C = 
N + =N- ) , a doublet of doublets {J = 7.5 Hz, J' = 5.0 Hz) at 5.44 
ppm assigned to the 4' hydrogen, and an (M + H) + = 494.1971 
(calcd mass for C23H28N7O4Si = 494.1972). In the key step, 
irradiation of the diazoketone 8 in methanol with a 450-W, Py-
rex-filtered, Hanovia lamp for 30 min at room temperature 
produced the oxetanes 9a and 9/3, the products of Wolff rear­
rangement.23-25 Separation of the diastereomeric oxetanes from 
each other and from the ketone 6 (12%)M and A^-benzoyladenine 
(25%)27 was achieved by chromatography on silica gel. NOE's 
between the 2' and 5' and 2' and 8 protons established that the 
major diastereomer (9a, 24%, [a]25

D -18.4° (c 1.58, CHCl3)) 
possessed the all-trans stereochemistry of oxetanocin. The absence 
of these NOE's in the minor, all-cis diastereomer (9/3, 12%, [a]25

D 

+27.6° (c 1.01, CHCl3)) and the presence of an NOE between 
the 8 and 5' protons confirmed that the Wolff rearrangement had 
proceeded with complete retention of configuration.28 Treatment 
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and /3-elimination.10 Subsequent elimination of <ert-butyldimethylsilanol 
would account for our inability to detect the resulting sugar moiety by TLC. 
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of the major epimer with excess NaBH4 in ethanol rapidly reduced 
the methyl ester and then, more slowly, effected N-debenzoylation 
to give the monoprotected alcohol 10 (74%), a valuable inter­
mediate for further modification.29 Addition of 1.7 equiv of 
trimethylsilyl chloride to a solution of 10 in methanol followed 
by neutralization with Dowex-SBR (OH") resin released oxeta­
nocin (1) in nearly quantitative yield. The identity of the synthetic 
(M25D -41.3° (c 0.65, pyridine)) and natural ([a]20

D -44.3° (c 
0.21, pyridine))4 material was established by direct comparison 
(TLC, MS, 300 MHz NMR) with an authentic sample. In 
particular, the chemical shifts of their ten 13CNMR (125.8 MHz) 
resonances in D2O differed by less than ±0.03 ppm. In summary, 
(-)-oxetanocin has been synthesized in 12 steps from adenosine 
in an overall yield of 5%. Application of this methodology to the 
preparation of pyrimidine analogues of oxetanocin is in progress. 
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The minimum energy conformation of 1,4-cyclohexadiene 
(1,4-dihydrobenzene)1"8 has become a subject of renewed interest 
because of recent research on the structure of its cis and trans 
substituted and condensed ring derivatives.9"14 

There are conflicting conclusions concerning the structure of 
the parent molecule in the gas phase. One electron diffraction 
study concluded that the molecule was planar or nearly planar,3 

but a later study6 favored a nonplanar molecule with C2/, symmetry 
and a dihedral angle of 159° between the ethylene planes. The 
boat conformation was apparently favored,9 although the vibration, 
rotational Raman, and NMR spectra were best interpreted as 
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